2013-09-10

Genome of elastomeric materials creates novel materials

Genome of elastomeric materials creates novel materials

"Biological methods of synthesizing materials are not new," said Melik C. Demirel, professor of engineering science and mechanics, Penn State. "What is new is the application of these principles to produce unique materials."

The researchers looked at proteins because they are the building blocks of biological materials and also often control sequencing, growth and self-assembly. RNA produced from the DNA in the cells is the template for biological proteins. Materials science practices allow researchers to characterize all aspects of how a material functions. Combining these three approaches allows rapid characterization of natural materials and the translation of their molecular designs into useable, unique materials.

"One problem with finding suitable biomimetic materials is that most of the genomes of model organisms have not yet been sequenced," said Demirel who is also a member of the Materials Research Institute and Huck Institutes of Life Sciences, Penn State. "Also, the proteins that characterize these materials are notoriously difficult to solubilize and characterize."

The team, lead by Ali Miserez, assistant professor, School of Materials Science and Engineering, Nanyang Technological University, Singapore, looked at mollusk-derived tissues that had a wide range of high-performance properties including self-healing elastomeric membranes and protein-based polymers. They combined a variety of approaches including protein sequencing, amino acid composition and a complete RNA reference database for mass spectrometry analysis. They present their results in a recent issue of Nature Biotechnology.

The researchers looked at three model systems. The protein containing egg case membranes of a tropical marine snail are intriguing because they have unusual shock-absorbing qualities and elasticity. Investigation using the variety of methods showed this material has a coiled structure with crosslinking that absorbs energy. This information can be applied to biomimetic engineering of robust yet permeable coiled, protein-based membranes with precisely tailored mechanical properties.

The array of techniques applied toanalysis of a mussel foot showed that a species-to-species variation exists in mussel, including unusual variation in the protein. These variations suggest that protein engineering could produce a range of self-healing properties.

The final model used jumbo squid sucker ring teeth (SRT), grappling-hook-like structures used for predatory attacks. Analysis of the squid teeth showed nanotubular structure and strong polymers. While there was some similarity to silk and oyster shell matrix proteins, the protein was novel and the researchers named it Suckerin-39. Further analysis showed that Suckerin-39's structure allowed it to be reprocessed into a variety of shapes.

"While some biological materials have interesting properties, they cannot be reshaped or remolded because they do not soften upon heating," said Demirel. "The SRT is an elastomer, which is moldable, it is a thermoplastic and can be reshaped."

The materials properties of SRT do not change after heating and reshaping.

"We now know that nature can do all kinds of things including nanotubes, cross-linked structures and shock-absorbing coils," said Demirel. "Now that we know the secrets, we need to find ways to mimic the structures and do it inexpensively."

This may mean having bacteria produce the required proteins or some other biomimetic approach.

"Integrating these eco-friendly materials into devices for wetting, friction and transport is relatively straightforward and will constitute an important part of our future research," said Demirel.

Also working on this project from Penn State was Abdon Pena-Francesch,graduate student in engineering science and mechanics.

Those at other institutions include Paul A. Guerette; Shawn Hoon; Sharouz Amini; Gavin Tay; and Dawei Ding, all of Nanyang Technological University, Singapore. Yiqi Seow; Fong Tian Wong, Vincent H.B. Ho; Kong Kiat Whye, all of Biomedical Sciences Institute, Singapore. Manfred Raida, Experimental Therapeutics Centre, Singapore; Admir Masic, Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany.

The Office of Naval Research and NIH partially funded this research.


Welcome to SUV System Ltd!

SUV System Ltd is ISO 90012008 Certified electronics distributor with 10 years of experiences.

We have built up long term business relationship with about many companies which are stockers and authorized agents. we have a steady and reliable supply to meet customer's demands to the greatest extent .Confidently, we are able to lower your cost and support your business with our years of professional service.

SUV System Ltd is Electronic Components Distributor Supplies,Find Quality Electronic Components Supplies Products IC(Integrated Circuits),Connectors,Capacitor,Resistors,Diodes,Transistors,LED at Suvsystem.com. Sourcing Other Energy, Environment, Excess Inventory Products from Manufacturers and Suppliers at Suvsystem.com

Electronic Components distributor:http://www.suvsystem.com

Connectors Distributor:http://www.suvsystem.com/l/Connectors-1.html

IC Distributor:http://www.suvsystem.com/l/IC(Integrated-Circuits)-1.html

LED Distributor:http://www.suvsystem.com/l/LED-1.html

Capacitor Distributor:http://www.suvsystem.com/l/Capacitor-1.html

Transistor Distributor:http://www.suvsystem.com/l/Transistors-1.html

Resistor Distributor:http://www.suvsystem.com/l/Resistors-1.html

Diode Distributor:http://www.suvsystem.com/l/Diodes-1.html

SUV System Ltd insists on the managing faith ofsincereness,speciality,foresight, win-win,so we build up stable-relationship customers located all over the world, including the States, Europe, Argentina, UAE, Malaysia, Australia,and India etc

we are focus on the following fields,and hope we can help you.


Dialight LED Schottky Diodes Switches Fairchild Semiconductor Transistors PANASONIC chip Filter saws Transistors IR transistor INFLNEON Diodes Fleld Effect Transistors Switching Diodes Bipolar Transistors HARRIS IC Low Ohmic Resistors Digital Transistors components NEC Transistors High Precision Resistors Military IC IR Diodes TDK IC NXP Diodes ST Transistors TOSHIBA Transistors Civil IC NS IC INTERSIL IC ROHM Resistors LED part Fast Recovery Diodes Xilinx IC Electronic News Voltage Regulators Transistors Chip Inductors IC(Integrated Circuits) Infineon Technologies Transistors Freescale Semiconductor Ligitek LED AD IC Resistor Arrays
http://www.suvsystem.com/a/5695.aspx

No comments:

Post a Comment